Engineering Design Process,
3rd Edition

Yousef Haik, Sangarappillai Sivaloganathan, Tamer M. Shahin

ISBN-13: 9781305253285
Copyright 2018 | Published
320 pages | List Price: USD $123.95

Gain a clear understanding of engineering design as ENGINEERING DESIGN PROCESS, 3E outlines the process into five basic stages -- requirements, product concept, solution concept, embodiment design and detailed design. Discover how these five stages can be seamlessly integrated. The book illustrates how the design methods can work together coherently, while the book’s supporting exercises and labs help you navigate the design process. The text leads the beginner designer from the basics of design with very simple tasks -- the first lab involves designing a sandwich -- all the way through more complex design needs. This approach to the design model equips you with the skills to apply engineering design concepts both to conventional engineering problems as well as other design problems.

Purchase Enquiry INSTRUCTOR’S eREVIEW COPY

Preface.
1. Introduction.
Chapter Objectives. Nature and Definition of Design. The Challenges of Design. Conventional Design Process. Introduction to Systematic Design. Design Process and the Design Model. Management of Design Process. Other Design Models. Structure of the Book and How to Use this Book. Chapter Summary. Problems. Lab 1: Design Model in Action -- A Tale of Developing a Sandwich. References.
PART I: GENERAL.
2. Essential Transferable Skills.
Objectives. Working in Teams. Scheduling. Research Skills. Technical Writing and Presentation. Presentation Style. Chapter Summary. Problems. Lab 2: Ice Breaking -- Forming Teams. Lab 3: Project Management (Microsoft Project). References.
3. Ethics and Moral Frameworks.
Chapter Objectives. Professionalism. NSPE Code of Ethics. Theory--Code of Ethics and Moral Frameworks. Moral Reasoning and Approaching Ethical Dilemmas. Chapter Summary. Problems. Lab 4: Ethics and Moral Frameworks. References.
PART II: REQUIREMENTS.
4. Identifying Needs and Gathering Information.
Objectives. Problem Definition: The Design Brief or Need Statement. Standards and Standardization. Human Factors. Organizing the Goal -- Objective Tree. Gathering Information: Clarifying the Need. Relevant Information Resources. Web Tools. Design Methods for Information Analysis. Market Analysis Report. Chapter Summary. Problems. References.
5. Customer Requirements.
Objectives. Customer Requirements. Choosing Customers. The Method. Eliciting the Customer Requirements. Planning to Extract Customer Requirements. Relative Importance of the Requirements. Examples. Chapter Summary. Problems. Lab 5: Kano Model Customer Needs Assessment. References.
PART III: PRODUCT CONCEPTS.
6. Establishing and Structuring Functions.
Objectives. Functions. Description of Devices in Function Domain. Definitions. =Functions for Conceptual Design. Function Tree Modeling. Function Structure Modeling Based on Flows. Reverse Engineering – Establishing the Functional Model of an Existing Product. Redesign Methodology. Chapter Summary. Problems. Lab 6: Reverse Engineering. References.
7. Specifications.
Objectives. Specifications What and Why? A Framework for Specification, Design and Testing. Customer Based Method by Ulrich and Eppinger. QFD-Based Method for Writing Specifications. Function-Based Method by DYM and Little. Theme-Based or Heuristic Method for Writing Specifications. Chapter Summary. Problems. References. PART IV: SOLUTIONS CONCEPT.
8. Conceptual Design.
A Typical Conceptual Design. Conceptual Design Using Morphological Analysis. Methods for Idea Generation. Approaches to Concept Design. Design Thinking. Developing Concepts -- Morphological Analysis Samples. Chapter Summary. Problems. References.
9. Concept Evaluation and Selection.
Objectives. Criteria for Concept Selection. Constraints. Concept Evaluation. Pugh’s Concept Evaluation Method. Decision Matrix. Example – Wheel Barrow to Transport Steel Balls. Chapter Summary. Problems. References.
PART V: EMBODIMENT DESIGN.
10. Concept Prototypes.
Objectives. Prototypes – What Are They? Prototype Dimensions. Planning a Prototype Study. Example 1 – Shuttle of an Operating Table. Example 2 – Concept Prototype for Laying Out. Design for “X”. Safety Considerations. Human Factors. Chapter Summary. Problems. References.
11. Embodiment Design.
Objectives. Embodiment Design. Embodiment Design Method by Dieter’s. Embodiment Design Method by Pahl and Beitz. Method by VDI. Embodiment Design Example – Wheelbarrow for Transporting Steel Balls. Chapter Summary. Problems. References.
PART VI: DETAIL DESIGN.
12. Detail Design.
Objectives. Production Drawings. Arrangement of Drawings. Technical Product Specification -- Standards. Chapter Summary. Problems. Lab 7: Geometric Dimensioning and Tolerancing. References.
13. Detailed Design – Engineering Analysis.
Objectives. Preliminary Analysis. Introduction to Finite Element Analysis. Material Selection. Cost Analysis. Outcomes of Analysis. Complete Design Project Documentation. Chapter Summary. Problems. Lab 8: Material Selection Tutorial. Lab 9: Use of Pro/MECHANICA® for Structural Analysis. References.
PART VII: CLOSURE.
14. Case Study.
Objectives. Stage 1: The Requirements. Product Concept. Solution Concept. Embodiment Design. Detailed Design-Engineering Principles.
15. Selection of Design Projects.
Design Project Rules. Aluminum Can Crusher. Coin Sorting Contest. Model (Toy) Solar Car. Workshop Training Kit. Shopping Carts. Mechanical Vents. All-Terrain Vehicle. Pocket-sized Umbrella. Model of Therapeutic Wheelchair. Disposable Blood Pump. Newspaper Vending Machine. Peace Corps Group Projects.

  • Yousef Haik

    Yousef Haik is currently serving as a Professor of Sustainable Development at the College of Science and Engineering at Hamad Bin Khalifa University. His academic career has included appointments in engineering (Mechanical, Biomedical, Nanoengineering and Sustainable Development) and science (Medicinal Chemistry, Physics and Nanoscience) programs. His teaching and research interest include engineering design, nanotechnology, MEMS and fluid dynamics.

  • Sangarappillai Sivaloganathan

    Sangarappillai Sivaloganthan is an Associate Professor in Mechanical Engineering at the United Arab Emirates University. Prior to joining UAEU, he was an Associate Professor at Brunel University, UK. His teaching and research interests include the engineering design process, computer-aided design, product innovation and process management.

  • Tamer M. Shahin

    Tamer Shahin is the Chief Executive officer at the Nuviun Company. He served as an Associate Professor in Mechanical Engineering at The Petroleum Institute, United Arab Emirates University, as well as at King’s College London, UK. His teaching and research interests include engineering design process, computer-aided design, product innovation and process management, engineering ethics, and design automation and optimization.

  • FIVE-STAGE DESIGN PROCESS ADDRESSES ENGINEERING DESIGN CHALLENGES. The authors show students how to use the proven design process to clearly define the problem and define a solution.

  • SYSTEMATIC APPROACH CLEARLY TEACHES THE FIVE-STAGE DESIGN PROCESS. The authors guide students carefully through each step, including requirements, product concept, solution concept, embodiment design and detail design. Each of the design stages is supported by a sequence of activities that further describes the required processes.

  • DETAILED EXAMPLES FURTHER DESCRIBE AND DEPICT THE SEQUENCE OF ACTIVITIES STUDENTS MUST FOLLOW. Students gain a better understanding of the tasks that need to happen during the process of converting an abstract set of requirements into the definition of a physically realizable system.

  • ILLUSTRATIVE EXAMPLES HELP STUDENTS NAVIGATE THE DESIGN PROCESS. Examples clarify and visually reinforce the important key steps in engineering design.

  • DESIGN LABS ARE INTEGRATED INTO EACH CHAPTER. These important, hands-on sections reinforce team work as part of the design process.

  • BOOK INCORPORATES A CONSISTENT APPROACH TO TEACHING THE ENGINEERING DESIGN PROCESS. Students learn how to regularly follow each important step, including identification of a need and setting goals, market analysis, specifications and constraints, function analysis, generating concepts, evaluating alternatives, analysis, experiment, and marketing.

  • BOOK INTRODUCES STUDENTS TO IMPORTANT PREREQUISITE CONSIDERATIONS BEFORE STARTING DESIGN. Students learn what issues they need to consider before beginning the design process, including scheduling, human factors, safety considerations, and presentation style.

  • PRACTICAL EXAMPLES THROUGHOUT SHOW HOW THE MATERIAL IS APPLIED. Examples as well as individual and team activities at the end of each chapter reinforces understanding.

  • LABORATORY EXPERIMENTS GIVE STUDENTS IMPORTANT PRACTICE IN TEAMWORK. In addition to helping students adjust to working in teams, design projects help students practice material selection, ergonomics, FEM analysis, geometric tolerance, and scheduling.

  • BOOK ADDRESSES COVERS IMPORTANT TOPICS FOR TODAY’S STUDENT. Students examine key practices, such as Reverse Engineering.

Cengage provides a range of supplements that are updated in coordination with the main title selection. For more information about these supplements, contact your Learning Consultant.

Instructor’s Companion Website for Haik/Sivaloganathan/Shahin’s Engineering Design Process
9781305254046

Instructor’s Solution Manual for Haik/Sivaloganathan/Shahin’s Engineering Design Process, 3rd
9781337291620

MindTap: Engineering Design Process 12 Months
9781305387300

Cengage eBook: Engineering Design Process 12 Months
9788000014111